

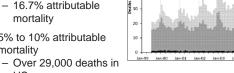
Epidemiological Trends in the Healthcare and Community Settings

Erik R. Dubberke, MD, MSPH, FSHEA

.

Associate Professor of Medicine Director, Section of Transplant Infectious Diseases Washington University School of Medicine St. Louis, MO

Increasing CDI Severity


70

60

8 50 000 T ad ■ Other Cause Specified^a ■ Cause Unspecified^a ■ C. difficil

- Outbreaks of severe CDI in US, Canada, Ireland, England, Netherlands, France, Germany
- Sherbrooke, Quebec, Canada, outbreak, 2003 - 16.7% attributable mortality
- 5% to 10% attributable mortality

US

Pépin J, et al. Can Med Assoc J. 2005;173:1037-42. Kwon JH, et al. Infact Dis Clin North Am. 2015;29:123-34. Hall AJ, et al. Clin Infect Dis. 2012;55:216-23. Lessa FC, et al. N Engl J Med. 2015;372:2369-70.

Costs of CDI

- Attributable inpatients costs of initial CDI (2012 USD)
 - \$3,327 to \$9,960 per episode (limited to studies with more robust methodology)
- Other costs not yet quantified
 - CDI outside of the hospital
 - Increase in transfers to skilled nursing at hospital discharge
 - Lost time from work (patient and/or caregiver)

Kwon JH, et al. Infect Dis Clin North Am. 2015;29:123-34.

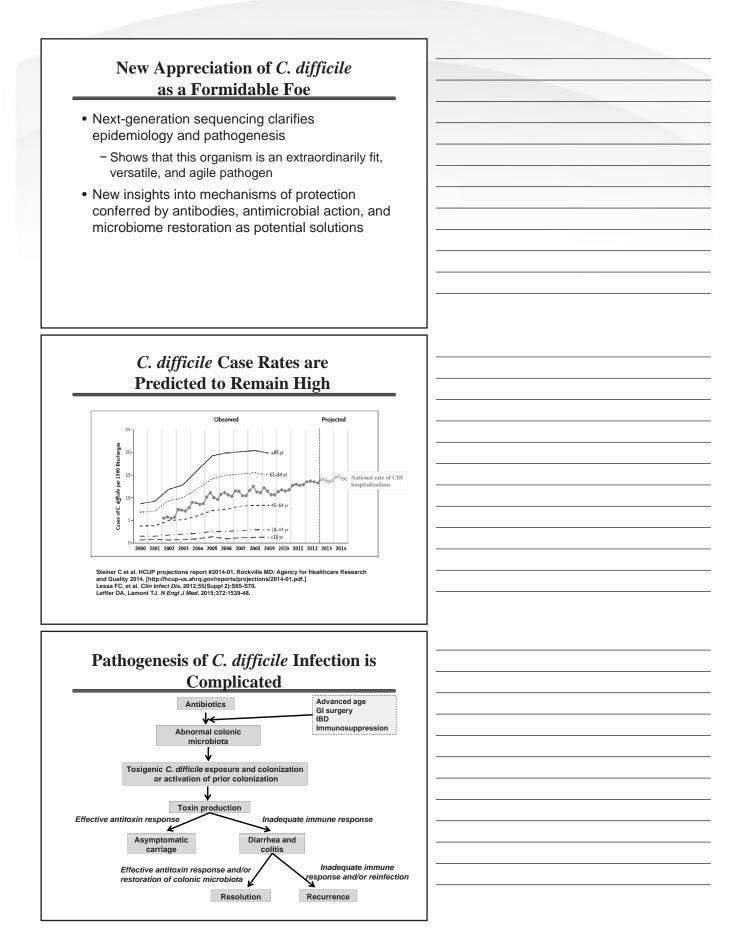
CDI is a Top Priority

- CDC: urgent threat, EIP surveillance
- NIH: requests for applications for novel therapeutics
- CMS: publically reported, may impact hospital reimbursement

Still Much to Understand

- Diagnosis
 - Patient selection
 - Diagnostic assay
- Prevention
 - Better data needed
 - Challenge: C. difficile is ubiquitous
- Treatment
 - Prevent complications
 - Prevent recurrences

Novel Approaches in Clostridium difficile Infection Management: Recognizing the Progress and Promise

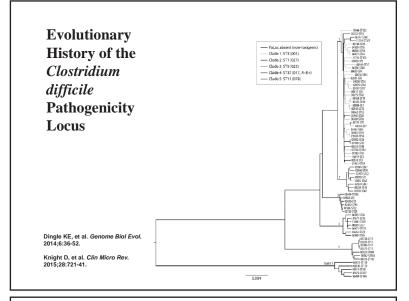

New Perspectives on CDI Pathogenesis and How this Translates to Therapy

.

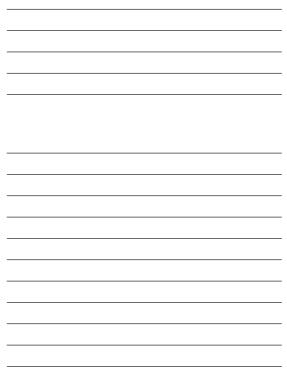

Thomas J. Louie, MD, FRCPC

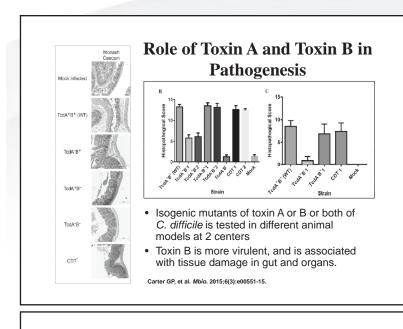
•••••••••

Professor Emeritus Department of Medicine and Department of Microbiology, Immunology and Infectious Diseases University of Calgary Calgary, Canada

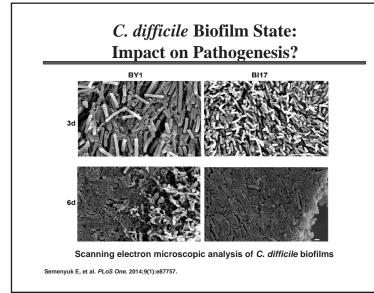


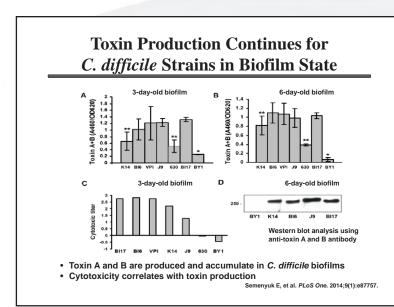
Whole Genome Sequencing Reveals that *C. difficile* is a Formidable, Versatile, and Highly Adaptive Pathogen

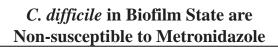


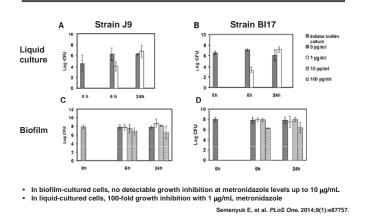

Sebaihia M, et al. The multidrug-resistant human pathogen *Clostridium difficile* has a highly mobile, mosaic genome. *Nat Genet.* 2006;38:779-786. http://dx.doi.org/10.1038/ng1830. Knight D, et al. *Clin Micro Rev.* 2015;28:721-41.

- Genome 4.3 Mb, 42% larger than other clostridia
- High proportion of mobile genetic elements [bacteriophage, introns, insertion sequences, CRISPRcas, transposable and conjugative elements]
- 'open genome', hyperadaptable
- Low percentage conserved genome
- Homologous recombination

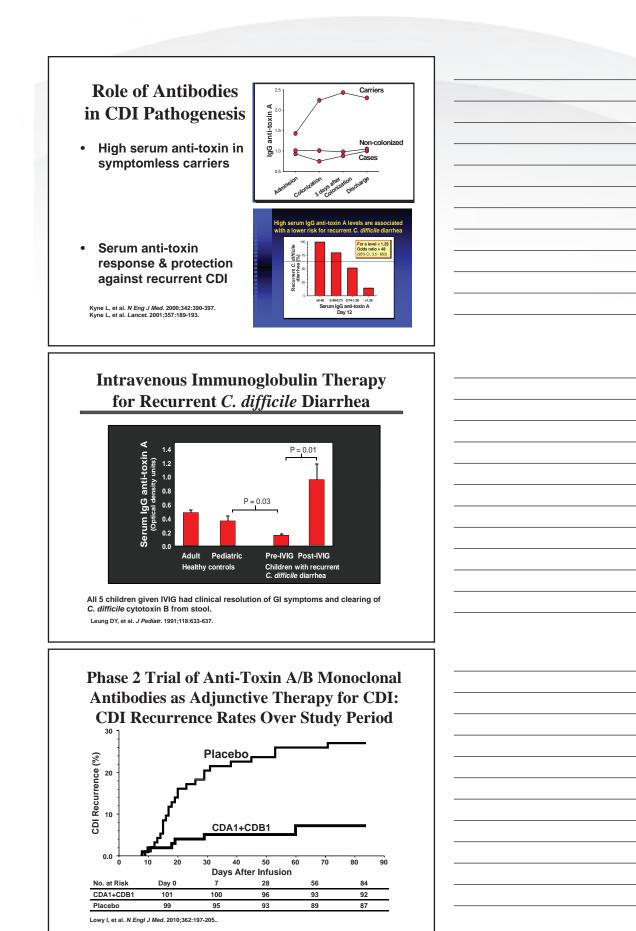

Origin of the Hypervirulent *C. difficile* Strain

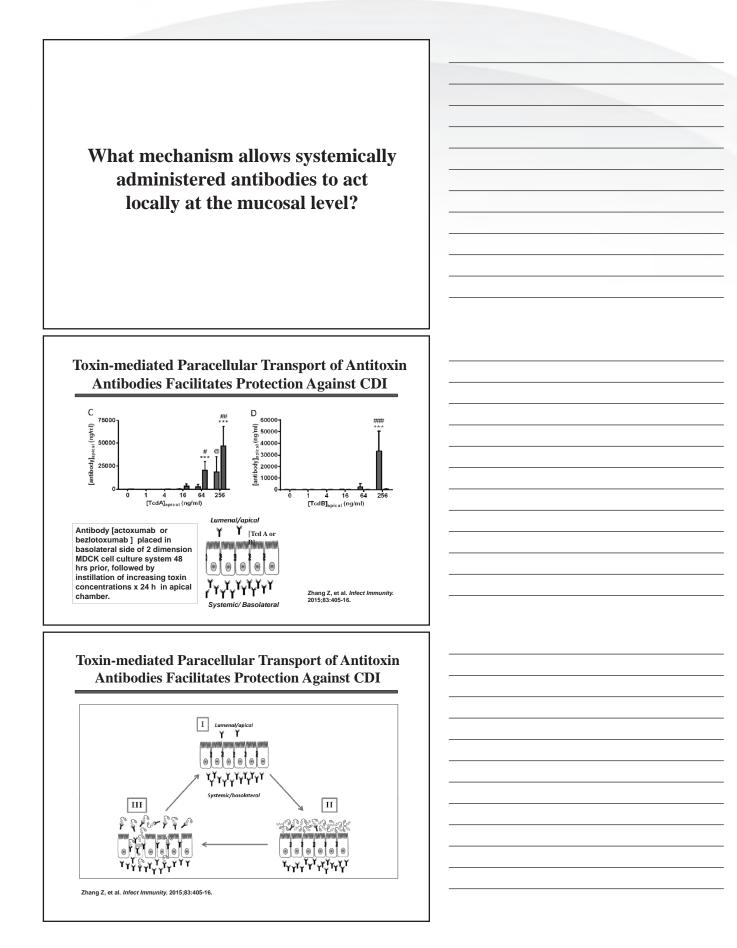




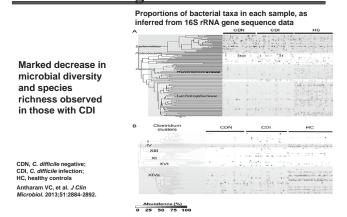

Has CDI Epidemiology Impacted Your Clinical Practice?

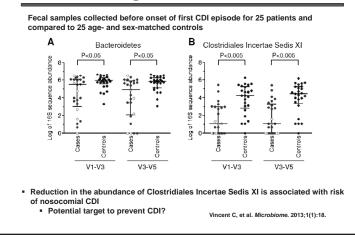
- Is NAP 1/BI/ribotype 027 a common strain at your hospital, state/province/region?
- Would a high prevalence (e.g. 40%) of quinolone-resistant *C. difficile* strains reduce quinolone use in your practice, as part of an antibiotic stewardship initiative?
- Has there been less use of metronidazole as first-line therapy due to hypertoxigenic strain infection?

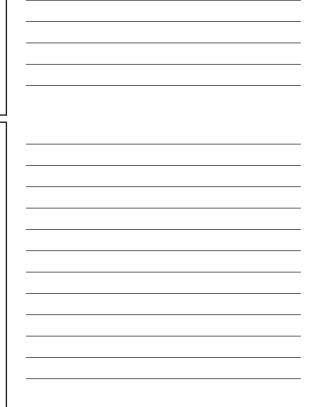


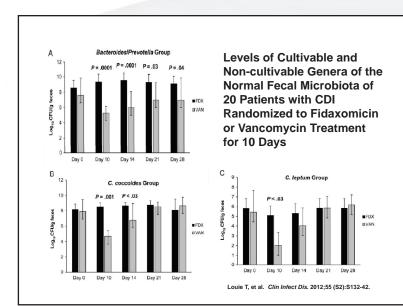


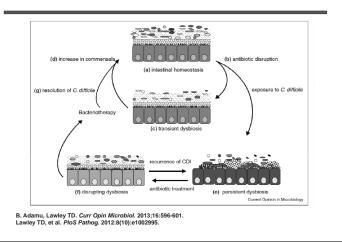
The Impact of Biofilm State on *C. difficile* Pathogenicity

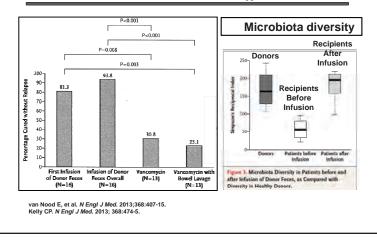

- Is this a possible explanation of failure to respond to antimicrobial therapy?
- Is this a factor accounting for recurrences?
- Findings partially justify maintaining the high concentrations of intraluminal vancomycin measured during vancomycin treatment of *C. difficile* infection?

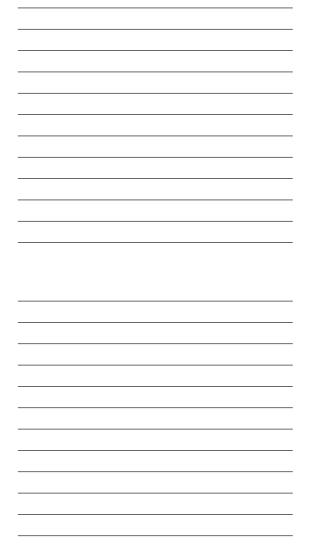


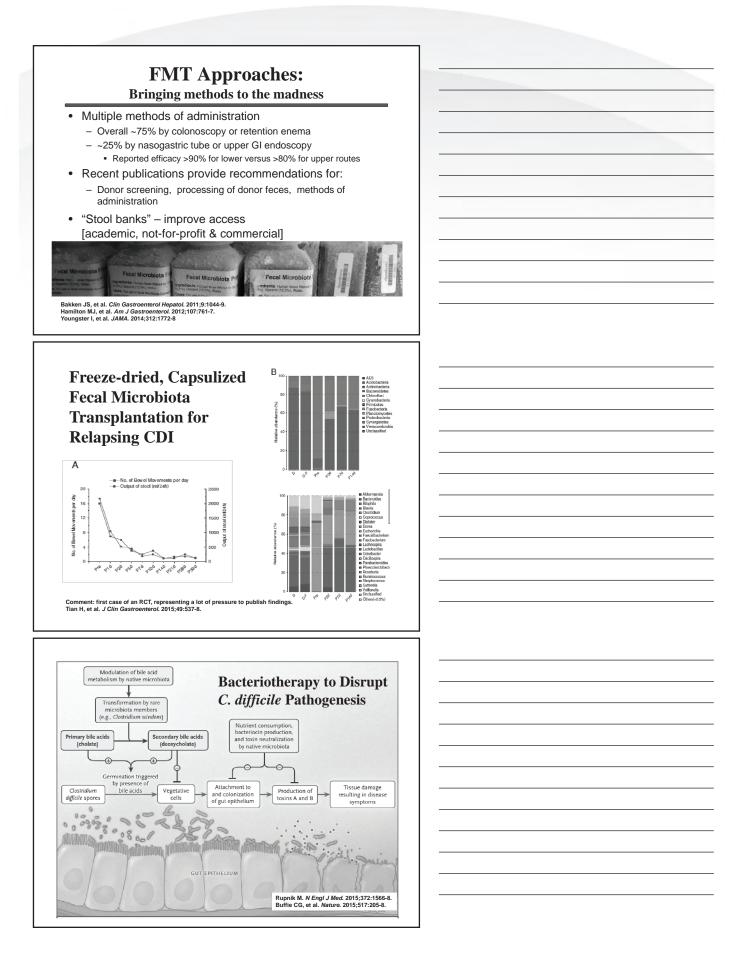

Very Commonly Related	Less Commonly Related	Uncommonly Related
Clindamycin	Other penicillins	Aminoglycosides
Ampicillin	Sulfonamides	Bacitracin
Amoxicillin	Trimethoprim	Metronidazole
Cephalosporins	Cotrimoxazole	Teicoplanin
Fluoroquinolones	Macrolides	Rifampin
		Chloramphenicol
		Tetracyclines
		Carbapenems
		Daptomycin
		Tigecycline
Ugly	Bad	Good


Role of Host Microbiome in the Pathogenesis of CDI


Reductions in Intestinal Clostridiales Precede the Development of Nosocomial CDI




Bacteriotherapy for the Treatment of CDI



Restoring the Fecal Microbiome: Duodenal Infusion of Donor Feces for Recurrent *C. difficile* Infection

Novel Approaches in Clostridium difficile Infection Management: Recognizing the Progress and Promise

Non-toxigenic C. difficile for Prevention of Recurrent CDI

CDI recurrence within 6 weeks as defined by diarrhea criteria and by investigator decision to re-treat for recurrent CDI

		NTCD-M3 Dosa	ge			
Events in Intention-to-Treat Safety Population	Placebo (n = 43)	10 ⁴ Spores/d for 7 d (n = 41)	10 ⁷ Spores/d for 7 d (n = 43)	10 ⁷ Spores/d for 14 d (n = 41)	All (n = 125)	
CDI recurrence, No. (%)	13 (30)	6 (15)	2 (5)	6 (15)	14 (11)	
Unadjusted comparison with placebo, P value ^a		.09	.002	.09	.003	
Adjusted comparison with placebo ^b						
Odds ratio (95% CI)		0.4 (0.1-1.2)	0.1 (0.0-0.6)	0.4 (0.1-1.2)	0.28 (0.11-0.69)	
P value		.11	.01	.10	.006	
CDI recurrence based on NTCD colonization, No./total (%) ^c						
Colonized with NTCD	0/4 (0)	1/26 (4)	1/31 (3)	0/29 (0)	2/86 (2) ^d	
Not colonized with NTCD	13/39 (33)	5/15 (33)	1/12 (8)	6/12 (50)	12/39 (31) ^d	

Gerding D, et al. JAMA. 2015;313:1719-27.

Evolution of Bacteriotherapy (FMT)

Whole fecal microbes delivered by enema, NG/NJ, colonoscopy

Whole fecal microbes in condensed form given orally, fresh, frozen, freeze dried

Modified whole fecal microbes...some components inactivated

Defined microbial mixtures of 4–33 strains

Single strains: NTCD, C. scindens?

Conclusions

- *C. difficile* is a survivor organism, adaptive, persists in many ecosystems, is capable of rapid change on a needs basis, and has multiple means of remaining with us.
- Interplay of host (*e.g., anti-toxin antibodies*), pathogen properties, antimicrobial agents, and microbiome predict outcomes
- Bacteriotherapy (FMT) is rapidly evolving and should have a major impact in general medicine.

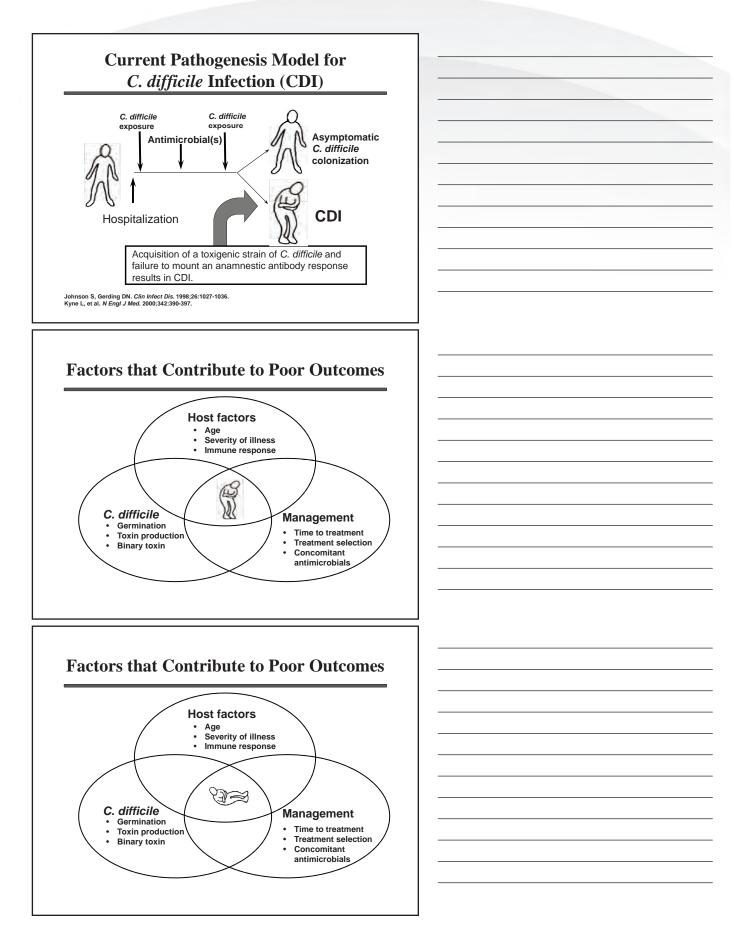
Recognizing Factors Associated with Poor Clinical Outcomes in CDI

Erik R. Dubberke, MD, MSPH, FSHEA

Associate Professor of Medicine Director, Section of Transplant Infectious Diseases Washington University School of Medicine St. Louis, MO

Patient Case

- A 74-year-old female nursing home resident with recurrent UTIs developed left toe itching
 She was started on ciprofloxacin for a UTI
- On day 3 of cipro, she developed diarrhea with severe abdominal cramping
- She soon was unable the make it to the bathroom
- She was sent to the emergency department
- Stool was positive for *C. difficile* toxins, her WBC was 16,000/mm³, and her serum creatinine was 2.5 mg/dL


Audience Response Question

Which is correct?

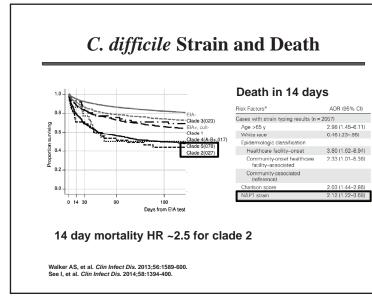
- 1. Most patients diagnosed with UTI actually have a UTI. The cipro was appropriate. Kudos to the nursing home for astute clinical acumen.
- 2. The positive test for *C. difficile* toxin in stool likely represents asymptomatic carriage, not CDI.
- 3. CDI is no big deal. Metronidazole is inexpensive and effective treatment.
- 4. It is possible to risk-stratify patients with CDI to select treatments that will optimize patient outcomes.

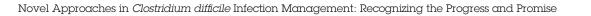
Two Biggest Challenges in Treating CDI

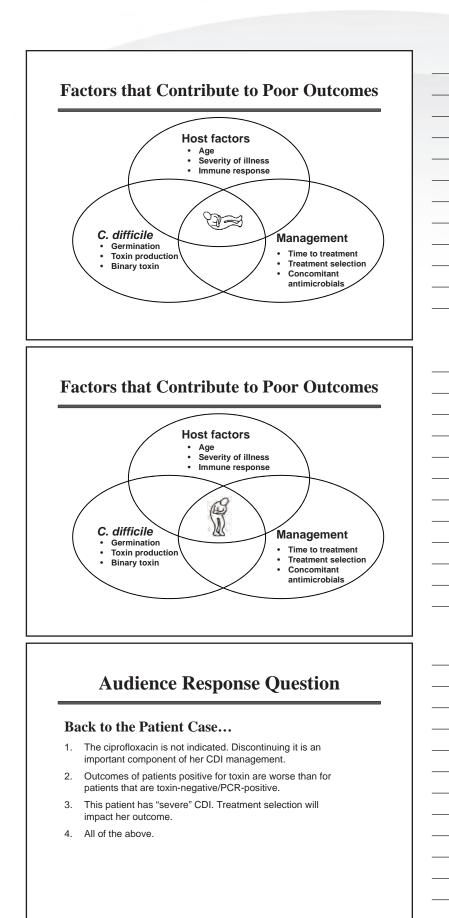
- Severe CDI
 - Decrease morbidity and mortality
- Recurrent CDI
 - Decrease recurrences

Patient Factors Associated with Death

Variable	Multivariable hazard ratio	
CDAD	1.23 (1.03-1.46)	
Male sex	1.17 (1.08-1.27)	
White race	1.22 (1.11-1.33)	
Modified APS		
<u>≤</u> 2	Reference	
3-4	1.09 (0.96-1.24)	
5-6	1.30 (1.14-1.49)	
<u>≥</u> 7	1.65 (1.46-1.87)	
Albumin, g/dL§		
>3.5	Reference	
2.5-3.5	1.62 (1.45-1.82)	
<2.5	2.93 (2.52-3.42)	
Liver disease		
None	Reference	
Mild	2.37 (1.85-3.04)	
Moderate to severe	3.76 (3.05-4.64)	
Diabetes with chronic complications	1.49 (1.18-1.88)	
Congestive heart failure	1.28 (1.15-1.42)	
Cerebrovascular disease	1.62 (1.37-1.92)	
Cancer, excluding leukemia or lymphoma	2.44 (2.15-2.76)	
Leukemia or lymphoma	4.92 (3.98-6.08)	
Metastatic solid tumor	4.41 (3.87-5.03)	
HIV/AIDS	2.88 (2.12-3.91)	Dubberke ER, et al. Emerg Infec
Paraplegia/ hemiplegia	1.53 (1.12-2.07)	Dis. 2008;14:1031-8.
Mechanical ventilation	3.17 (2.71-3.71)	
ICU admission	1.31 (1.14-1.50)	

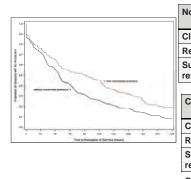

C. difficile Strain and Outcomes


Severe CDI*


Severe Outcomes from CDI**

Risk Factors ^a	AOR (95% CI)	Risk Factors ^a	AOR (95% CI)
Cases with strain typing results (n =	2057)	Cases with strain typing results (n =	2057)
Age>65 y	1.69 (1.31-2.18)	Age >65 y	1.71 (1.06-2.76)
Healthcare-associated epidemiologic classification ^b	1.75 (1.32–2.34)	White race	0.49 (.2985)
Emergency department visit during 12 wk prior to infection	1.31 (1.01–1.69)	Healthcare-associated epidemiologic classification ^b	2.90 (1.63-5.19)
Charlson index	1.08 (.98-1.20)	Charlson index	1.71 (1.38-2.13)
Medications during 14 d prior to infection		Any antibiotic during 14 d prior	1.63 (1.04-2.56)
Immunosuppressive	1.42 (1.05-1.92)	to infection	
treatment		NAP1 strain	1.66 (1.09-2.54)
Any antibiotic	1.38 (1.08-1.76)		
NAP1 strain	1.74 (1.36-2.22)	**ICU transfer, colectomy, death	in 30 davs

See I, et al. Clin Infect Dis. 2014;58:1394-400.



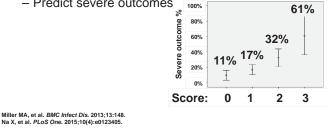
Novel Approaches in Clostridium difficile Infection Management: Recognizing the Progress and Promise

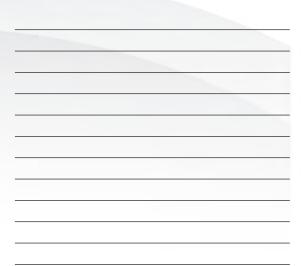
Impact of Concomitant Antibiotics on Response to CDI Treatment

No CA	Fidaxo N=391	Vanco N=416	Р
Clinical cure	92%	93%	0.80
Recurrence	12%	23%	<0.001
Sustained response	81%	69%	<0.001
-			
CA	Fidaxo N=90	Vanco N=102	Р
CA Clinical cure			P 0.04
•	N=90	N=102	-
Clinical cure	N=90 90%	N=102 79%	0.04

Mullane KM, et al. Clin Infect Dis. 2011;53:440-7.

Risk Prediction for Severe Outcomes


Variable	Beth Israel (1995)	UPMC v1 (2005)	UPMC v2 (2008)	Calgary v1 (2006)	Calgary v2 (2007)	Hines VA (2007)	Illinois (Zar) (2007)	Temple (2009)
Age	х						х	
Concomitant abx	х							
Immunosuppresants	х		х					
Comorbidities	х		х					
Altered mental status	х		х					
Temperature				х		х	х	
Hypotension						х		
Abd pain / tender	х	х		х	х			
BM frequency				х	х			
Elevated WBC	х	х	х		х	х	х	х
Hypoalbuminemia	х		х				х	
Renal function	х						х	
Radiological findings		х	х			х		
Endoscopy findings							х	


Fujitani S, et al. Infect Control Hosp Epidemiol. 2011;32:220-8.

More Prediction Scores

- ATLAS: age, concomitant antimicrobials, albumin, WBC, creatinine
 - Predict response rate to CDI treatment
- Na: age, WBC, creatinine

- Predict severe outcomes

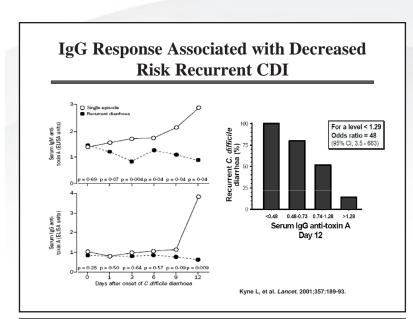
Ultimate Goal: CDI Severity Scores and Improved Outcomes

- Illinois / Zar score
- Original study: metronidazole response 76% vs. vancomycin 97% (p=0.02)

	Before	After	P value
	(N = 144)	(<i>N</i> = 112)	
Mild to moderate CDI	N = 85	N = 59	
Refractory disease (N, %)	8 (9.41)	5 (8.47)	NS
Death during admission (N, %)	0(0)	1 (1.7%)	NS
Length of stay, days (median, range)	11 (1-196)	11 (1-64)	NS
Severe CDI	N = 59	N = 53	
Refractory disease (N, %)	19 (32.20)	8 (15.09)	0.035
Death during admission (N, %)	8 (13.6%)	2 (3.77)	0.096
Length of stay, days (median, range)	17 (4-202)	15 (4-481)	NS

Zar FA, et al. Clin Infect Dis. 2007;45:302-7. Jardin CG, et al. J Hosp Infect. 2013;85:28-32.

Recurrent CDI


- Recurrence risk after first episode 10% to 30%
 - Risk increases with additional recurrences
- Associated with worse outcomes
 - Readmissions (RR = 2.5; 95% CI, 2.2-2.9)
 - Costs (\$11,631; 95% CI, \$8,937-\$14,588)
 - Mortality (HR 1.3; 95% CI, 1.1-1.6)

Olsen MA, et al. *Am J Infect Control.* 2015;43:318-22. Olsen MA, et al. *Clin Microbiol Infect.* 2015;21:164-70. Dubberke ER, et al. *Infect Control Hosp Epidemiol.* 2014;35:1400-7.

Audience Response Question

Back to the Patient Case...

- 1. Infecting *C. difficile* strain is not associated with risk of recurrent CDI.
- 2. Anti-toxin antibody levels are not associated with risk of recurrent CDI.
- 3. It is not possible to identify patients at increased risk for recurrent CDI.
- 4. Recent exposure to ciprofloxacin may increase this patient's risk for recurrent CDI.

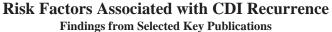
C. difficile Strain and Recurrent CDI

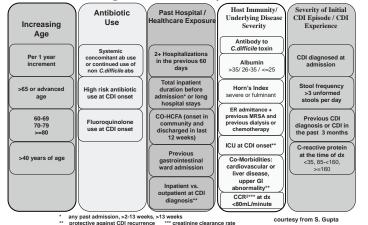
			Recurrence			
Variable	Test	Reference	OR	95% CI	P Value	
REA group	BI group	Non-BI group	1.57	1.01-2.45	.046	
	No isolate	Non-BI group	0.91	.57-1.47	.70	
Age	≥65	<65	1.36	.93-1.98	.11	
CDI history	One prior episode ^b	No prior episode	1.82	1.15-2.87	.01	
Region	Canada	United States	1.37	.91-2.07	.13	
	Europe	United States	0.78	.43-1.39	.14	
Antibiotic history prior to CDI treatment	Yes	No	NA	NA	NA	
CA during treatment period ^a	Yes	No				
CA during treatment or follow-up period ^a	Yes	No	1.57	1.03-2.39	.04	
Comorbidity ^d	Yes	No	NA	NA	NA	
Treatment	Fidaxomicin	Vancomycin	0.45	.3165	<.0001	

REA, restriction endonuclease analysis Petrella LA, et al. *Clin Infect Dis.* 2012;55:351-7.

Difficult to Predict Recurrent CDI

- Risk for recurrence already high
- Risk may be influenced by local epidemiology/practices
- No commercially-available assays to measure anti-C. difficile antibody levels


Risk Factors for CDI and Recurrent CDI


Initial CDI

- Age
- Antimicrobials
- Severity of underlying illness
- Immune response

Recurrent CDI

- Age
- · Antimicrobials
- Severity of underlying illness
- Immune response

Prediction of C. difficile Recurrence

Factor	Odds ratio	95% CI
Age (per 1 year)	1.21	1.04 - 1.40
CO-HCFA CDI (ref: HO-CDI)	1.71	1.32 - 2.22
2+ hospitalization in prior 60 days (ref: 0 hospitalizations)	1.49	1.08 - 2.06
New gastric acid suppression at the onset of iCDI	1.59	1.13 - 2.23
High-risk antibiotic at the onset of iCDIa	1.25	1.01 - 1.55
Fluoroquinolone at the onset of iCDI	1.31	1.04 - 1.65
ICU at the onset of iCDI	0.49	0.34 - 0.72
^a High risk antibiotics included all cephalosporins, clindamycin, and p	enicillins.	

Zilberberg MD. et al. J Hosp Med. 2014:9:418-23.

Recurrent CDI Score with Outcomes Data

	Points	for Each Ri	sk Factor	Ris	licted k of rrence		Points	for Each Ri	sk Factor	Ris	dicted sk of rrence
No. of Risk Factors	Age ≥75 y	UBM ≥10/d	Cr ≥1.2 mg/dL	FDX	VAN	No. of Risk Factors	Age ≥75 y	UBM ≥10/d	Cr≥1.2 mg/dL	FDX	VAN
(A) Score sheet for p	eonle with	no nrior e	nisnde			(B) Score sheet for p	eople with	prior episo	de		
No risk factors	0	0	0	10%	18%	No risk factors	0	0	0	14%	25%
1 Risk factor						1 Risk factor					
Age	1	0	0	13%	24%	Age	1	0	0	19%	32%
UBM	0	1	0	13%	24%	UBM	0	1	0	19%	32%
Cr	0	0	2	17%	29%	Cr	0	0	2	24%	39%
2 Risk factors	0			1170	2070	2 Risk factors					
Age and UBM	1	1	0	17%	29%	Age and UBM	1	1	0	24%	39%
Age and Cr	1	0	2	21%	35%	Age and Cr	1	0	2	29%	45%
UBM and Cr	0	1	2	21%	35%	UBM and Cr	0	1	2	29%	45%
3 Risk factors	-		-			3 Risk factors					
Age, UBM, and Cr	1	1	2	28%	44%	Age, UBM, and Cr	1	1	2	37%	54%

The validated model had a C statistic of 0.59.

D'Agostino RB Sr, et al. Clin Infect Dis. 2014;58:1386-93.

Conclusions

- CDI epidemiology continues to evolve
- Several unmet needs
 - Validated severity/recurrence scores needed
 - Data to support how score can be used to improve outcomes
 - Optimal management of severe, complicated CDI
- Significant financial burden
 - Data remain focused on inpatient costs
- Treatment landscape evolving
 - Current and future treatments

Integrating the New with the Old when Managing CDI

Stuart J. Johnson, MD, FIDSA, DTM&H

.

Professor, Department of Medicine Stritch School of Medicine Loyola University Chicago, IL

Overview

- Current guideline recommendations
- Limitations of metronidazole and vancomycin
- Alternative approaches to therapy
- Emerging approaches in treating CDI and reducing the risk of recurrence

Patient Case Study

A 65-year-old woman was admitted for communityacquired pneumonia and treated with a fluoroquinolone plus a macrolide. While in the hospital, she develops CDI and over the next 2 months, she experiences a total of 3 episodes of CDI. Her treatment regimen for each episode are as follows:

- + Episode 1: Metronidazole 500 mg TID \times 10 d
- Episode 2: Vancomycin 125 mg QID \times 10 d
- Episode 3: Vancomycin 125 mg QID × 10 d followed by taper/pulse

Patient Case Study (cont'd)

The patient now develops a fourth episode of CDI. How would you treat this latest episode?

- 1. Fecal microbiota transplant
- 2. Repeat vancomycin treatment followed by taper/pulse
- 3. Vancomycin 125 mg QID × 10 d followed by rifaximin 400 mg BID × 14d
- 4. Fidaxomicin 200 mg BID × 10 d
- 5. Fidaxomicin 200 mg BID × 10 d followed by fidaxomicin 200 mg QD × 7 d, then once every other day for 2–3 weeks

History of CDI Guideline Recommendations & Clinical Practice

1970s:	Vancomycin established as effective treatment for pseudomembranous colitis (<i>Tedesco F, et al. Lancet. 1978;2:226-8.</i>)
1980s:	Metronidazole shown to be effective for CDI (Teasley DG, et al. Lancet. 1983;2:1043-6.)
1995:	 Hospital Infection Control Practices Advisory Committee (HICPAC): Reduce vancomycin use in hospitals (concern for emergence of vancomycin resistance in other pathogens) (<i>MMWR</i>. 1995;44(<i>RR</i>-12):1-13.)
1995:	 Society for Healthcare Epidemiology of America(SHEA) Position Paper on CDI: Vancomycin or metronidazole for 10 days is effective Metronidazole may be preferred (Gerding DN, et al. ICHE 1995;16:459-77.)
2010:	 SHEA/IDSA (Infectious Diseases Society of America) CDI guidelines: Vancomycin is the drug of choice (DOC) for severe disease Metronidazole is DOC for mild-to-moderate CDI 10.14 drug course recommended
	 10–14 day course recommended (concern for slow response to metronidazole) (Cohen SH, et al. ICHE 2010;31:431-55.)

Treatment Guidelines for CDI in Adults: SHEA/IDSA 2010

- Metronidazole is the drug of choice for the initial episode of mild-moderate CDI (500 mg orally TID) for 10–14 days (A-I)
- Vancomycin is the drug of choice for an initial episode of severe CDI. The dose is 125 mg orally QID for 10–14 days (B-I)
- Vancomycin orally (and per rectum if ileus is present) with or without metronidazole IV...for severe, complicated CDI. Vancomycin is dosed at 500 mg (C-III)
- Consider colectomy in severely ill patients...(ideally before) serum lactate rises to 5 mmol/L and WBC rises to 50,000/mm³ (B-II)

Cohen SH, et al. Infect Cont Hosp Epidemiol. 2010;31:431-55.

Treatment Guidelines for CDI in Adults: SHEA/IDSA 2010 – *Recurrent CDI*

- Treatment of the first recurrence is usually with the same regimen as for the initial episode (A-II) but should be stratified by disease severity (C-III)
- Do not use metronidazole beyond first recurrence or for long-term chronic therapy (B-II)
- Treatment of the second or later recurrence with vancomycin using a taper and/or pulse regimen is the preferred next strategy (B-III)
- No recommendations can be made regarding prevention of recurrent CDI in patients requiring continued antimicrobial therapy (C-III)

Cohen SH, et al. Infect Cont Hosp Epidemiol. 2010;31:431-55.

Limitations of Current Guidelines

- No mention of fidaxomicin
- Limited evidence for recommendations on severe, complicated CDI
- Limited evidence for recommendations on recurrent CDI
- · Little mention of fecal microbiota transplant

Limitations of Metronidazole and Vancomycin

- Recurrent CDI after initially effective treatment
- Modest-to-low fecal concentrations of metronidazole
- Potential for resistance (MIC creep with metronidazole)
- Neither treatment directly addresses the main pathogenic mechanism of *C. difficile* (toxin production)

New Data on CDI Treatment Since Publication of the IDSA/SHEA Guidelines

- Fidaxomicin phase 3 trials, randomized substudy of patients with first CDI recurrence
- Randomized trial of FMT
- Findings from the largest and most rigorous randomized comparison of metronidazole and vancomycin (phase 3 trials of tolevamer)

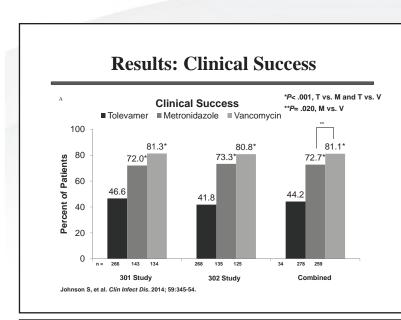
Phase 3 Multicenter Trials of Tolevamer for CDI randomized, double-dummy, double-blind, active-controlled, parallel-design

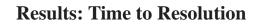
	Treatment Regimen		
	incatinent regimen		
	First dose	All subsequent doses	
Treatment arm	Day 1, single loading dose	Through day 10	Through day 14
Tolevamer (3.0 gm in 43 mL liquid)	129 mL (9.0 g) plus 1 placebo capsule	1 placebo capsule qid	43 mL (3.0 g) tid
Vancomycin (125 mg capsules)	Placebo liquid plus 1 capsule	1 capsule qid	Placebo liquid tid
Metronidazole (375 mg capsules)	Placebo liquid plus 1 capsule	1 capsule qid	Placebo liquid tid

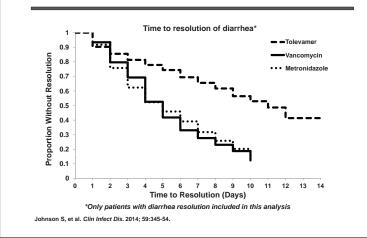
Johnson S, et al. Clin Infect Dis. 2014; 59:345-54.

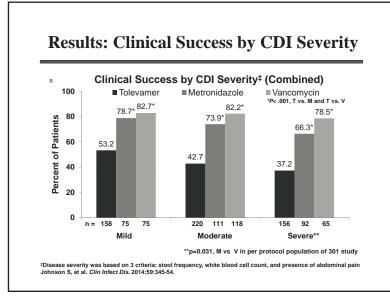
Results

- 1118 patients randomized between 2005 & 2007
 Study 301, n=574 (91 sites in the US & Canada)
 - Study 302, n=544 (109 sites in Europe, Australia, & Canada)
 - 1071 included in the full analysis set (FAS)*
 - tolevamer, n=534
 - metronidazole, n=278
 - vancomycin, n=259
- Patients similarly matched across the 3 treatment arms, but differences noted between studies in terms of age, body weight, inpatient status, and concomitant antibiotic use

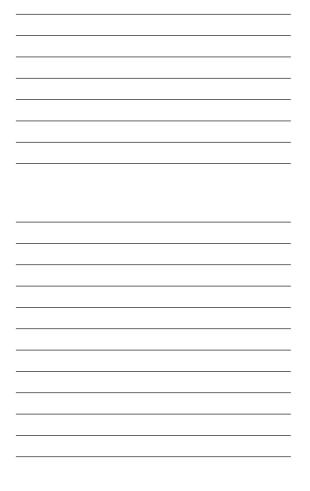

*FAS: all randomized patient who received any treatment and who had any post-dose evaluation

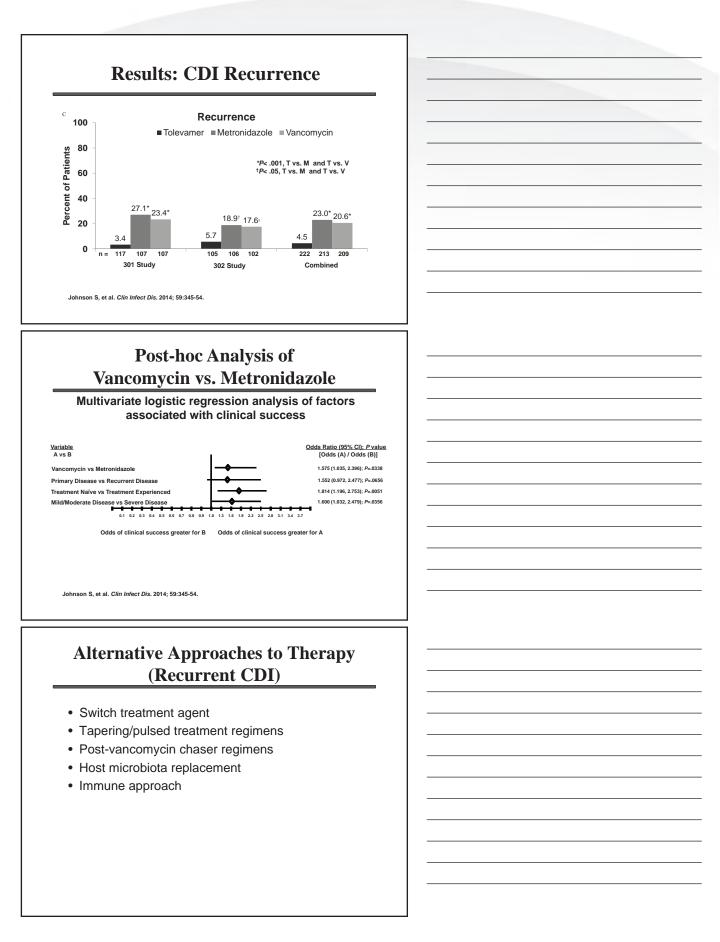

Johnson S, et al. Clin Infect Dis. 2014; 59:345-54.

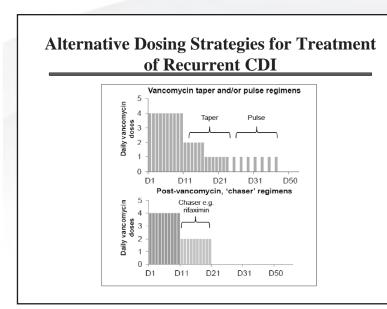

Baseline Characteristics

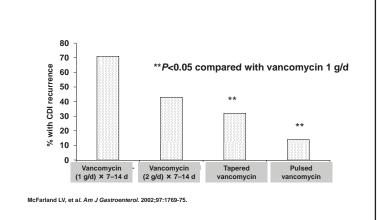

	Study 301 (n=543)	Study 302 (n=528)	P Value
Age	62 ± 17.7	68 ± 16.4	<.0001
Age group (>65)	46%	61%	
Gender (F)	52%	54%	
Body wt. (kg)	75 ± 24	68 ± 17	<.0001
Inpatient	56%	91%	<.0001
Treatment naïve (yes)	48%	55%	
CDI history (1º episode)	71%	83%	
Severe CDI	34%	24%	
Concomitant antibiotics (yes)	19%	26%	.044
Antibiotics during f/up (yes)	56%	60%	
CDI Strain (BI, aka RT 027)*	25%	8%	

*Prevalence of BI strain in study 301 > 302, but overall distribution of strains was not different Johnson S, et al. Clin Infect Dis. 2014; 59:345-54.

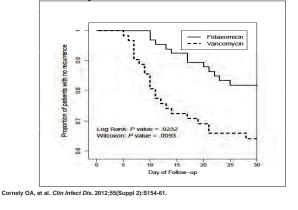








Vancomycin Regimens for Recurrent CDI Post-Hoc Analysis From Two Trials (n=163)



Interruption of Recurrent CDI by Serial Therapy with Vancomycin and Rifaximin (the "Rifaximin Chaser")

- Eight women with multiple CDI recurrences
 - Mean age: 72 \pm 15.3 years
 - Mean previous CDI episodes: 5.8 \pm 1.5
 - Mean time to recurrence between episodes: 10.5 \pm 12.9 d
- Regimen: rifaximin (400 bid for 2 weeks) immediately after completing the last course of vancomycin and before recurrence of symptoms
- Seven of the eight patients had no further diarrhea recurrence
- One patient had a symptomatic recurrence 10 days after stopping rifaximin, but responded to a second course of rifaximin without subsequent recurrence (CD isolate recovered after 2nd course showed high-level resistance to rifaximin in vitro)
- Johnson S, et al. Clin Infect Dis. 2007;44:846-8.

Rate of Recurrent CDI in Patients Treated for 1st Recurrence of CDI: Randomized Substudy of Phase 3 Fidaxomicin Trials

Caution for Using a Standard Treatment Course of Fidaxomicin in Patients with Multiple CDI Recurrences

- Two patients with multiple recurrences given treatment doses of fidaxomicin with improvement but followed by symptomatic recurrence
- Prior regimens
 - 62-YOF: M × 14 d followed by Sb twice, V (many), V tapers (several)
 - 44-YOF: (M × 14 d twice); V × 10 d twice, rifaximin chaser

M, metronidazole; Sb, Saccharomyces boulardii therapy; V, vancomycin Orenstein R. Clin Infect Dis. 2012;55:613-4.

Patient	•	No. of CDI episodes	Prior CDI Regimens	Duration of CDI treatment up to fidaxomicin chaser*	Outcome (Follow up)
1	67/M	4	M, M, V _{t,} V _t	8 mo (6 mo continuous V until FDX chaser)	Success (10 mo
2	80/F	5	M, V, V, V, V&ivM followed by V_t	24 mo (5 mo of continuous V until FDX chaser)	CDI recurrence 3 mo later, but was treated for UTI just prior to recurrence
3	32/F	8	M, M, V _t , V _t , V/Rfx, V/Rfx, V _t (IVIG), V _t	30 mo (5 mo of continuous V until FDX chaser)	Success (9 mo)

Fidaxomicin Chaser

*Following their last CDI episode, patients were 'maintained' on oral vancomycin (V) at a low dose until fidaxomicin (FDX) became available. Vancomycin was stopped and fidaxomicin 200 mg was given BID for 10 d.

Johnson S, Gerding DN. Clin Infect Dis. 2013;56:309-10.

68-year-old Woman Developed CDI Following Clindamycin Treatment for Infected Leg Wound (Oct'12)

Date	CDI episode/symptoms	Treatment
11/12/12*	1	Metronidazole × 10 days
12/06/12	2	Metronidazole × 10 days
12/21/12*	3	Vancomycin × 14 days, then taper (finished 2/27/12)
03/13/13	4	Vancomycin × 14 days, then fidaxomicin bid × 10 days <i>Fidaxomicin chaser</i>
04/23/13*	5 Symptoms started 17 days after completing fidaxomicin chaser (frequent, loose stools, became watery with urgency)	Fidaxomicin bid × 10 days, then daily × 7 days then every other day × 14 days <i>Fidaxomicin taper</i>

Confirmed with positive stool C. difficile PCR assays

Alternative Fidaxomicin Dosing Regimens for Patients with Multiple CDI Recurrences

Symptom-free intervals (SFI) & subsequent recurrence rates

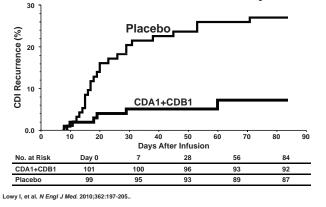
n	Age, mean <u>+</u> SD	Sex (F)	No. of CDI episodes, mean <u>+</u> SD	Longest SFI* prior to FDX regimen, median (IQR)	SFI* post FDX regimen median (IQR)	Subsequent recurrence rate
		Fi	idaxomicin C	haser (200 mg bio	d x 10d)	
8	66.9±19	75%	5.5±2	57 (48)	278 (649)	38%
12	63.6±16	58%	5.1±2	g daily x 7d, then q e 25 (30)	257 (280)**	18%
	SFI: Symptom-				hitney U test	

Novel Approaches in Clostridium difficile Infection Management: Recognizing the Progress and Promise

Emerging Approaches in Treating CDI and Reducing the Risk of Recurrence

- Narrow-spectrum antibiotics
 Several new antibacterial agents under study
- Microbial approaches
 Biotherapeutics (e.g., non-toxigenic *C. difficile*)
- Toxin binders
 Tolevamer or similar agent as adjunctive therapy?
- Immune approaches
 Monoclonal antibodies to toxin A and B

CDI Antibacterial Agents in Clinical Trials: www.clinicaltrials.gov


Drug	Sponsor	Drug Class	Clinical Status
CB-183,315 (surotomycin)	Cubist	cyclic lipopeptide	Phase III
ACT-179811 (cadazolid)	Actelion	quinolonyl- oxazolidinone	Phase III
LFF571	Novartis	thiopeptide	Phase II
SMT19969	Summit	?	Phase II
CRS3123	NIAID	methionyl-tRNA synthetase inhibitor	Phase I

Non-toxigenic *C. difficile* (NTCD) Following Standard CDI Treatment: Phase 2 Trial Results

- 168 patients randomized to:
 - 7 days of low-dose non-toxigenic CD (10⁴ spores),
 - 7 days of high-dose non-toxigenic CD (10⁷ spores),
 - 14 days of high-dose non-toxigenic CD (107 spores), or
 - Placebo
- Colonization with non-toxigenic CD (primary endpoint)
 54% treated with low dose
 - 79% treated with high dose
- Recurrent CDI (secondary endpoint)
 reduced by ≥50% over placebo
- The CDI recurrence rate was 2% (2/86) among those that were successfully colonized with non-toxigenic CD

Gerding DN, et al. JAMA. 2015;313:1719-27.

Phase 2 Trial of Anti-toxin A/B Monoclonal Antibodies as Adjunctive Therapy for CDI: CDI Recurrence Rates Over Study Period

Potential Therapeutic Role of Actoxumab/Bezlotoxumab, mAbs Directed Against TcdA/TcdB

- Adjunctive therapy: both phase 2 and phase 3 studies of actoxumab/bezlotoxumab included standard antibiotic therapy for CDI; the potential for this as stand-alone therapy is unknown
- Initial vs. recurrent CDI?
- Could make a case for use in both settings
- Mild/moderate CDI vs. Severe CDI?
- Stand-alone therapy in mild cases and avoid any further host dysbiosis by antibiotics?
- Adjunctive therapy for Fulminant CDI?
 - Toxemia has been identified in CDI patients (Yu H, et al. PLoS ONE. 2015;10(4):e0124235); Could toxemia be involved in the often rapid deterioration of these patients?

Potential Therapeutic Role of Actoxumab/Bezlotoxumab Phase III Clinical Trial Results

To be presented during the "*Clostridium difficile* Prevention and Treatment Session", Sunday morning (8:30–11:00 AM): Meeting Room 6B Upper Level (Session 151)

- Wilcox M, et al. Phase 3 double-blind study of actoxumab (ACT) & bezlotoxumab (BEZ) for prevention of recurrent *C. difficile* infection (rCDI) in patients on standard of care (SoC) antibiotics (MODIFY II).
- Gerding D, et al. Phase 3 double-blind study of bezlotoxumab (BEZ) alone & with actoxumab (ACT) for prevention of recurrent *C. difficile* infection (rCDI) in patients on standard of care (SoC) antibiotics (MODIFY II).

Summary

- Accumulating data indicate that metronidazole is inferior to vancomycin in the treatment of CDI
- Vancomycin and fidaxomicin are similarly effective for primary CDI and fidaxomicin is superior for sustained response
- Most patients with recurrent CDI can be managed with currently available anti-infectives (e.g., vancomycin and fidaxomicin) but novel regimens need to be used (e.g., taper, post-vancomycin chaser regimens) and patients need careful follow-up
- Unresolved issues: In what setting should fidaxomicin and FMT be used? Primary CDI? 1st CDI recurrence? 2nd recurrence? 3rd or later recurrence?
- Potential new treatments for CDI include additional narrowspectrum antibiotics, biotherapeutics (NTCD), and immunebased therapy (mAb)